
The LLM ARChitect: Solving ARC-AGI
Is A Matter of Perspective

Daniel Franzen∗†1, Jan Disselhoff∗†2, and David Hartmann†3

1dfranzen.it@gmail.com
2JanDissel.it@gmail.com

3Lambda, Inc., davidh@lambdal.com

Abstract

Large language models (LLMs) have made impressive progress, but
they still struggle with abstract reasoning tasks like the Abstraction
and Reasoning Corpus (ARC-AGI). Prior approaches have not been
able to achieve high scores on ARC-AGI, suggesting a gap between
current AI systems and human-level reasoning. In this work we ap-
proach the problem using tailored data augmentation techniques, op-
timizing the data format as well as training performance, and lever-
aging our generative model both as a predictor and as a classifier for
good solutions. We are able to maximize performance despite limited
computational resources, achieving 53.5 (56.51) points on the private
evaluation set during the Kaggle ARC Prize 2024 Contest. Addition-
ally, we are able to solve 72.5 out of 100 randomly split-off tasks from
the public evaluation set (while merging the other 300 tasks into our
training data). The code of our submission is publicly available in the
Kaggle competition2 and in the Github repository of this paper.3

∗Contributing equally to the Kaggle ARC Prize 2024.
†Contributing equally to this paper.
1Run finished after kaggle submission deadline
2Team “the ARChitects”: https://www.kaggle.com/competitions/arc-prize-2024
3Github Repository: https://github.com/da-fr/arc-prize-2024

1

https://www.kaggle.com/competitions/arc-prize-2024/leaderboard
https://www.kaggle.com/competitions/arc-prize-2024
https://github.com/da-fr/arc-prize-2024


1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabili-
ties across diverse tasks, from natural language processing to code gener-
ation. However, the fundamental question of whether these systems can
truly "reason" remains contentious in the artificial intelligence community.
The Abstraction and Reasoning Corpus (ARC-AGI) [1], designed specifically
to evaluate genuine intelligence in AI systems, provides a stark illustration
of this challenge. Although the tasks appear simple to human test takers,
both classical algorithmic approaches [2] and modern neural architectures [3]
have struggled to achieve high performance on ARC-AGI, painting a bleak
picture for artificial reasoning capabilities.
Yet, recent developments suggest this picture might be incomplete. The
rapid evolution of language models has produced increasingly capable sys-
tems at surprisingly small scales, as demonstrated by models like LLaMA-
3.2-3B [4] and Nvidia NeMo-Minitron-8B [5]. Moreover, growing evidence
suggests that many perceived limitations of these models may be artifacts
of implementation or limitations of language rather than fundamental ca-
pability gaps. For example, Allen-Zhu and Li [6] show that models often
have awareness of their mistakes, even when unable to correct them. Small
mistakes in data modelling can significantly inhibit finetuning performance,
not because the problem is too complex, but because a simpler structure
might be available for the model to learn [7]. Finally, a growing body of
research [8, 9, 10] establishes that apparent failures can frequently be traced
to tokenization issues rather than reasoning deficits.
It seems that models often possess the requisite capabilities but struggle to
access them effectively, leading to a counter-intuitive conclusion: The chal-
lenge for LLMs lies not in the absence of reasoning ability, but in creating
conditions that allow these capabilities to emerge.

Building on these insights, we developed an approach specifically tailored to
the ARC-AGI dataset. Our method solves 72.5 task out of 100 examples
of the public evaluation dataset and 56.5 points in a late submission to the
Kaggle competition, suggesting that efficient finetuning, proper tokenization
and tailored algorithmic support can indeed unlock the latent reasoning ca-
pabilities of these systems.

2 Pipeline Overview

Our approach focuses on efficiently fine-tuning a large language model to
solve the Abstraction and Reasoning Corpus (ARC-AGI) tasks. The ap-
proach can be separated into several distinct components: an expanded
dataset, secondary fine-tuning at test-time, an inference method optimized to
ARC-AGI and a heuristic candidate selection algorithm based on the predic-

2



Figure 1: High Level overview of our pipeline. We retrain an LLM on public ARC-AGI
data, which is then finetuned an additional time on the hidden test cases. Subsequently,
this model predicts several solution candidates from which we select two using an algo-
rithmic approach. All blue rectangles are calculated in the 12h timelimit of the kaggle
notebook. At several parts in our pipeline we "augment" (Aug) the data by applying
transformations to the examples.

tion scores. We also use data augmentations at train, inference and scoring,
substantially increasing our score. The key components of our pipeline are
outlined below:

Datasets:
In addition to the official ARC-AGI dataset, which is divided into “pub-
lic training”, “public evaluation”, and “private evaluation” subsets, we also
utilize the Re-ARC dataset by Hodel [11]. This extended dataset is de-
rived from the public training dataset using custom generators written in
a domain-specific language (DSL), allowing for the creation of additional,
diverse examples. Since the Re-ARC dataset is a superset of the public
ARC-AGI public training dataset, we choose to replace the public training
data with Re-ARC.
We additionally use Concept-ARC and ARC-Heavy [12, 13], which we intro-
duce in Section 3.1.

Data Representation:
In order to represent the ARC-AGI puzzles in a denser format, we modify
the tokenizer and embedding layers by reducing the number of tokens sig-
nificantly to only 64 symbols, allowing us to encode the data succinctly and
transparently for the LLM. More detailed information regarding our data
modeling approach can be found in Section 3.2.

Augmentation:
While data augmentations are commonly used to increase dataset sizes, our

3



approach uses augmentations at every part of the pipeline. Specifically, we
use rotations, transpositions, and permutations of the colors and the order
of examples, as these preserve the underlying task structure. We use these
augmentations not only to increase the amount of training data, but also to
increase the variety in our predictions and to provide a way to filter wrong
solutions. This contributes significantly to the performance, and will be
discussed more extensively in Section 3.3.

Models:
We use the augmented data to fine-tune decoder-only LLMs. Being con-
strained by Kaggle’s 2 Nvidia T4 GPUs, the models have to meet two main
requirements: a maximal memory usage of 16GB during training and infer-
ence, and a minimum context size of 8000 tokens to handle inference on larger
problems. We want to point out two models that worked particularly well
in our case: Mistral-NeMo-Minitron-8B-Base [5] and an uncensored version
of Llama-3.2-3B-instruct [14].

Preliminary & Secondary Fine-Tuning:
Our models are initially trained on Re-ARC and 75% of the ARC-AGI public
evaluation dataset, leveraging LoRA adapters [15] as a fine-tuning method.
The fine-tuned model is subsequently uploaded to Kaggle, where it undergoes
additional fine-tuning on the hidden dataset. For more comprehensive details
on training and hyperparameters, please refer to Section 3.4.

Candidate Generation:
After fine-tuning has completed, the final model is used to generate solution
candidates. We found that both greedy and multinomial sampling provided
suboptimal performance for the benchmark. Instead, we designed a cus-
tom generator that leverages depth-first search (DFS) to extract all possible
completions with a sampling probability exceeding a specified cutoff value.
This DFS approach is applied to both the original task as well as its "aug-
mented" versions, resulting in a list of candidates for each task. This not
only improved our score, but also the inference time needed. For an in-depth
discussion on inference see Section 3.5.

Candidate Selection:
Finally, given the generated list of candidates, we use the aggregated log-
softmax scores assigned by the fine-tuned model to select two of them for
submission. To make sure that these values are informative we compute
them over several augmentations of the task. This selection algorithm is
highly effective, provided that the correct candidate is among those gener-
ated. For a detailed explanation of our candidate selection process, refer to
Section 3.6.

4



Model Baseline + Fine-tune + Candidate + AugScore + DFS

Llama-mix 21.0 35.5 55.5 57.5 63.5
Nemo-mix 26.0 40.5 57.5 69.0 72.5

Table 1: Performance on 100 randomly split-off examples of the ARC-AGI evaluation
dataset, adding parts of our pipeline. Baseline score shows performance of our network
after preliminary finetuning when taking two samples from generation. Fine-tune adds
test-time training on the examples of the puzzles. Candidate selection uses augmentation
and greedy sampling to generate a candidate for each of 8 different augmentation of the
task, using log softmax scores for selection. AugScore additionally uses the sum of the
log softmax probabilites from 8 different augmentations as score. Finally, DFS uses our
custom DFS scheme to find all candidates with a sampling probability larger than 10%,
at the same time increasing the augmentations during inference from 8 to 16 per task
(to reflect the speedups gained by the DFS sampling). Scores were measured on the 100
problems of the evaluation dataset that were not merged into the training set.

3 Methods

Our approach to solving ARC-AGI combines data expansion, multi-stage
fine-tuning of language models, and specialized solution evaluation. Below,
we explain how these components work together to improve the model’s
performance while keeping computational costs manageable.

3.1 Datasets

The Abstraction and Reasoning Corpus (ARC-AGI) introduced by Chollet
[1] challenges the idea that language models cannot effectively generalize
from a small number of examples, often referred to as few-shot prompting.
The original ARC-AGI dataset consists of 900 reasoning tasks, divided into
400 training tasks, 400 public evaluation tasks, and 100 private evaluation
tasks. Each task involves grids of varying sizes, ranging from 1x1 to 30x30,
utilizing a palette of ten distinct colors.

Importantly, each task contains only a hand full instances of the respective
problem, as illustrated in Figure 2(a). Each instance consists of two grids:
one representing the input of the problem and the other representing the
expected output. The objective is to infer the underlying mechanics from
a few examples and apply this understanding to a new, unseen instance as
illustrated in the figure.

Hodel [11] introduced the re-ARC dataset, which re-implements all 400 tasks
of the public training dataset. Their code can be used to generate an ar-
bitrary amount of training data for these tasks. An example of code and
generated data can be seen in Figure 2.

In addition to ARC-AGI and its re-implementation re-ARC, we make use
of Concept-ARC, which is a second dataset containing similar problems in-

5



Figure 2: Examples of Re-ARC challenges and the corresponding code.

volving "basic spatial and semantic concepts" from the same domain as the
original ARC-AGI dataset. It contains 176 additional tasks [12].

Our best scoring model also included ARC-Heavy [13], which uses LLMs to
generate a large amount of synthetic tasks.

3.2 Data Modeling

In order to apply LLMs to ARC-AGI puzzles, we need to tokenize the data in
a manner suitable for our model. This process requires careful consideration
of two main challenges:

First, due to the limited context size in typical LLM architectures, an in-
crease of inference time and decline in performance on long context tasks [16],
we require a representation that minimizes the number of tokens the model
needs to process. Secondly, it is widely recognized that numerous common
failure modes in Large Language Models (LLMs) stem from tokenization [8,
9, 10]. For instance, standard tokenization techniques group numbers (some
but not all combinations) of one, two or three succeeding digits into dedi-
cated “grouped-digit tokens” [17]. These kinds of merges would complicate
the puzzles unnecessarily.

To address this, we opted to simplify the token set available to the model.
In particular, we reduced the number of tokens available from over 120.000
to 64 or less tokens (see Table 2).

6



Token Category Tokens Purpose

Alphabet A-Z, a-z (excl. I,O,i,o) Learned pre-prompt tokens
Numbers 0-9 Encoding the 10 colors
Newline token \n Signals end of each grid line
Input/Output I, O Signals start of problem input/output
Begin token ⟨bos⟩ Inserted once at the beginning
End token ⟨eos⟩ Inserted after each output
Padding token ⟨pad⟩ Internal usage (e.g. batching)

Table 2: Reduced Token Set for ARC-AGI-specific LLM Model

Visual Representation of a Task Instance:

Compact String Format of same Instance:
<bos> A ... Z a ... z I 2 1 1 0 1 2 1 \n

1 2 1 0 2 2 2 \n
2 1 1 0 1 1 1 \n

O 1 1 1 \n
1 3 1 \n
1 1 1 \n

<eos>

Figure 3: Our standard tokenization approach. Note that we use one token per cell instead
of compressing the problem more. We also try to not include any unnecessary delimiters.
The Pre-prompt(green) is only included for the first example. Depending on the model
and run there might be some small changes to the Pre-prompt and Input/Output tokens.

This reduction offers key benefits. It significantly decreases the model size,
as we can remove the majority of rows from the embedding layer. Further,
token merges that typically occur during text tokenization are no longer pos-
sible. This ensures that the model can focus precisely on the data without
the interference of digit separators.
As illustrated in Figure 3, we add a small number of extra tokens to the start
of a task. Surprisingly, this addition improves the model’s performance. We
believe that during fine-tuning (where the embedding layers are also trained),
the model learns to use these extra tokens as a form of computational buffer,
which influences every subsequent token, thereby enhancing overall perfor-
mance.

We also experimented with adding extra tokens between input and output

7



Figure 4: Examples of augmented data. We generally allow rotations and transposition
of the examples,as well as permutations of color and shuffling of the order of examples.

of each problem instance. The idea here is to give the model time to in-
ternally process the input before having to generate the first token of the
output. However, we could not clearly determine if this improved model
performance.

3.3 Augmentation

Data augmentation has been a common approach in previous ARC-AGI
competitions. However, our method extends beyond traditional dataset aug-
mentation, applying transformations throughout our pipeline, both during
training and during inference. To formalize our approach, we first need to
define the structure of ARC-AGI puzzles.

A task, denoted as C = (X1, Y1, X2, Y2, ..., X
c, Y c), consists input grids Xi

paired with their corresponding output grids Yi. The final pair, Xc and Y c,
represent the task grid input Xc and the correct solution Y c. An augmen-
tation is a function T that maps C to another task T (C) while preserving
the task’s essential structure. While formally defining “essential structure”
is difficult as it requires deep understanding of the task patterns, we can still
identify symmetries of interest.

Our transformations fall into three categories, as illustrated by an example
in Figure 4:

• D8 symmetry operations (rotations and reflections) applied consis-
tently across all grids Xi, Yi

• Color permutations applied uniformly throughout the task, with spe-
cial consideration for the background color, given by the token 0 .

8



• Reordering of input-output example pairs, which may improve out-of-
distribution performance, as evidenced in the literature [7]

While we use the same class of augmentations at each part of the pipeline,
the role and requirements of these augmentations vary across our approach:
During training, augmentations generate additional valid examples which
helps preventing the model from overfitting and provides a broader set of
tasks. For inference, we use augmentations to generate a more varied set
of solution candidates as outlined in Section 3.5. This requires T to be
reversible, enabling us to map the model output to the original un-augmented
task. In Section 3.6, we use augmentations to evaluate candidates from
different perspectives and pick the best two guesses to be submitted. Here
the only requirement is that the transformed tasks and solution candidates
can be meaningfully evaluated by our model.

3.4 Training the models

Choosing the right large language model (LLM) was essential for achiev-
ing strong performance. We tested a variety of different models and found
that Mistral-NeMo-Minitron-8B-Base [5] performed the best in our ex-
periments. The model is rather large, so efficient fine-tuning methods were
necessary to use it effectively.

As a result, we used Low-Rank Adaptation (LoRA)[18], 4-bit quantization
and gradient checkpointing, all supported by the unsloth library. We applied
the LoRA adaptations to all layers of the network, including the input and
output embeddings. We used a learning rate of 1e−4 for all layers, except
for embedding which had a reduced learning rate of 1e−5.

For each task C = (X1, Y1, X2, Y2, . . . , X
c, Y c), we computed gradients only

on the outputs Yi for i > 1 and Y c, so the model never has to predict an
input grid, and as it is impossible to correctly predict the first output grid
without having seen at least on example. During our second finetuning we
compute the gradient on all available outputs.

Preliminary training: The Preliminary training used a LoRA rank of 256
and was done on a single H100 GPU (see Table 3) for various datasets. These
included Re-ARC [11], the ARC-AGI public evaluation set [1], Concept-ARC
[12], and ARC-Heavy [13]. The best-performing model on the private evalu-
ation set (Nemo-heavy) was trained on 531.318 training examples: 257.600
from Re-Arc, 51.200 from ARC-AGI-pub-eval, 22.528 from Concept-Arc and
200.000 from ARC-Heavy. Due to the data augmentations we applied, there
were no exact repetitions in the examples.

Secondary training: Secondary training was time-constrained and focused
solely on the hidden test set, using a LoRA rank of 64 and running for

9



Model name Re-Arc public Concept ARC-Heavy
[11] eval [1] ARC[12] [13]

Llama-rearc [19] 368 × 400 - - -
Llama-mix 368 × 400 64 × 300 64 × 176 -
Nemo-mix 368 × 400 64 × 300 64 × 176 -
Nemo-full [20] 736 × 400 128 × 400 128 × 176 -
Nemo-heavy 644 × 400 128 × 400 128 × 176 1 × 200k

Table 3: Number of training examples (epochs × dataset tasks) from each datasets in
different training runs.

4 epochs. We also tried an additional separate fine-tuning for each task,
which increased the score slightly. However, it did not do enough to be
considered runtime efficient in our approach and was discarded. Instead, we
chose to make use of both T4 GPUs available on Kaggle by splitting the test
dataset in two parts, and running the full pipeline in parallel on the halves.
Using this approach we estimate the training took around 5:20 in the Kaggle
notebook.

For a comparison of our training parameters used, see Table 4. In general we
found that modern architectures and larger models performed substantially
better. In the following sections we will present results for three different
models, each trained on different sections of the datasets (see 3). Llama-mix
and Nemo-mix are directly comparable models, that showcase the substantial
increase in performance from running the 8B Nemo model, compared to
the 3B Llama model. Llama-rearc provides us with a better evaluation set
performance baseline, as it has not seen any evaluation examples during
training. And finally, the table includes Nemo-full and Nemo-heavy, our
highest scoring models on the private evaluation set. However, as their
training includes the full evaluation set, we cannot provide any evaluation
performance except for our final Kaggle score (53.5 points Nemo-full and
56.5 for Nemo-heavy).

3.5 Solution Inference

Given a trained decoder-only network, standard solution generation is easy.
When provided with tokens x1, . . . , xn, a model M will calculate the proba-
bility distributions px2 , . . . , pxn+1 for subsequent token predictions. The next
token, pxn+1 , can then be selected either greedily (using argmax) or stochas-
tically (using multinomial sampling). To generate a solution candidate we
repeat this procedure until we sample an ⟨eos⟩ token, indicating that the
example is done. The output is parsed into an array, with some checks to
make sure it is a valid grid.

10



Initial Fine-Tune Secondary Fine-Tune
Locally Locally On Kaggle

Batch size 4 2 2
Gradient acc. steps 2 2 2
LoRA rank 256 64 64
LoRA α 24 16 16
LR (LoRA adapters) 1e−4 1e−4 1e−4
LR (embeddings) 1e−5 1e−5 1e−5
Number of Epochs see Table 3 48 32
LR schedule cosine cosine cosine
LR warmup phase 25% 25% 100 steps
Weight decay off off 0.01
Model quantization 4 bit 4 bit 4 bit
Train on 1st output no yes yes

Table 4: Training parameters for initial as well as secondary fine-tuining. Parameters for
Kaggle were chosen differently due to time and memory constraints.

While this can achieve good results, we found both sampling strategies to be
sub-optimal for generating correct solutions to a given task. We attribute
these shortcomings to several reasons:

Greedy Sampling: Greedy sampling is straightforward but presents two
major issues. First, it offers no guarantees regarding the final sampling prob-
ability of the generated solution. It is entirely possible for greedy sampling to
produce a solution with very low overall probability: a single high-confidence
mistake by the LLM can lead to an undesirable sequence, thereby preventing
a successful continuation. Second, greedy sampling inherently lacks variabil-
ity, yielding only a single result for a given input.

Stochasic Sampling: Standard stochastic sampling techniques introduce
more variability but can also repeatedly return the same solution. Moreover,
we have no guarantee that the best solution is sampled. If the optimal solu-
tion has, for example, a 10% sampling probability, we may need to sample
excessively to generate this specific solution. Given that inference is partic-
ularly slow – especially for longer tasks – this approach can quickly become
computationally prohibitive, even more so within the limitations of a Kaggle
notebook.

While there are several alternative sampling schemes, such as sampling with
temperature or beam search, we found that a custom sampling algorithm
produced the best results for the benchmark:

We employ a depth-first search (DFS) to explore all possible paths through

11



Figure 5: Illustration of the DFS scheme. In this example, only paths with a cumulative
probability greater than 5% are kept. Since many paths are cut, we will often end up with
far less than 20 possible solutions.

the solution tree, as long as the path has a cumulative sampling probabil-
ity greater than a specified threshold p. As soon as a branch falls below
this probability, the path is discarded. By leveraging inference caches, this
algorithm is able to quickly and efficiently identify all potential candidates
that have a sampling probability greater than p. This also means that we
are guaranteed to extract the solution with the best possible score, provided
that it has a probability greater than p – something we cannot guarantee
with greedy or multinomial sampling.

We apply this DFS sampling approach across multiple augmented versions
of each task. The motivation here is that certain solutions are easier for the
model to "see" from alternative perspectives. Since we are using a decoder-
only text model, it lacks an intrinsic understanding of the 2D structure of
these tasks. This limitation becomes evident when solutions that involve
critical vertical lines receive a lower probability, while the same task, once
transposed, is much easier for the model to solve. (see Figure 6)

Consequently, depending on the specific run, we generate DFS candidates
across 8 to 16 augmentations for each task. This results in a set of candidates
that is guaranteed to include the correct solution if and only if the model
could have sampled that solution with a probability greater than p from at
least one augmented perspective.

This strategy is highly effective. Not only do we increase our scores by
several points, but the algorithm is also substantially faster then baseline
(see Table 5). The algorithm is also very memory efficient, as we only need
to track a single branch at a time and can avoid duplicating caches – in stark
contrast to beam search, which scales linearly with the number of beams
considered. We provide pseudocode for DFS sampling in Algorithm 1.

12



Sampling Llama-rearc Llama-mix Nemo-mix
all 400 tasks 100 tasks 100 tasks

A B R A B R A B R

Greedy 51.00 60.00 10:51 51.5 65.5 2:36 59.0 75.0 3:49
Stochastic 50.50 59.50 10:58 50.5 65.5 2:39 58.5 72.0 3:55
DFS 17% 51.25 61.50 7:21 51.5 66.5 1:51 60.5 76.5 2:35
DFS 10% 51.00 63.50 9:54 51.5 73.0 2:34 60.5 80.0 3:40

Table 5: Percentage of correct solutions sampled for 100 randomly split-off tasks of the
ARC-AGI public evaluation set (full public evaluation set is used for Llama-rearc) using
different sampling strategies on 16 augmented versions (transposition and rotations, as
well as randomly permuted colors) of the task. The first column (A) denominates the
number of tasks correctly solved by the two best-scoring guesses of the model, while the
second column (B) represents the number of tasks for which the correct solution was
present among the candidates obtained during the inference run. Runtimes (column R),
hh:mm for inference on an Nvidia H100 GPU are given in parentheses. Note that there
might be some conceptual leakage from the 300 evaluation tasks used in training of Llama-
Mix and Nemo-Mix, possibly inflating their scores a little.

Using this algorithm we are able to generate the correct solution pretty well
– in up to 80% of the cases on eval! However, we see a big drop in score
when selecting two of these candidates, as we have no way to reliably choose
the correct solution from our large number of candidates (yet).

3.6 Selection Strategies

Figure 6: Illustration of the idea behind our candidate scoring. Depending on the aug-
mentation used, the model is able to "see" places of high uncertainty more clear. In this
example, the wrong line is barely visible in the transposed version of the task, but when
rotating by 180° the model can clearly see that something is wrong. As a result, aggre-
gating these scores provides a highly effective way to filter wrong candidates.

Once we have generated a set of solution candidates, the next step is to
determine which ones to submit. Our pipeline up to this point is capable of
generating candidates that have a good chance of including the correct solu-
tion, but to consider a task solved, we must identify it among the candidates,

13



Model No Aug. Scoring Scoring with 8 augmentations
Best 2 Similarity Best Worst Sum of Sum of Time
Scores Selection Prob Prob Probs log p [mm:ss]

Llama-rearc 51.00 51.25 48.38 51.63 48.75 54.5 37:31
Llama-mix 51.5 57.0 57.0 62.0 57.5 63.5 9:50
Nemo-mix 60.5 66.0 66.0 65.5 65.0 72.5 17:05

Table 6: Comparison of different selection strategies using 8 augmentations for each can-
didate (full evaluation set for Llama-rearc, 100 split-off tasks otherwise). Selecting the
candidate with the highest summed log-prob (or alternatively product of probabilities)
results in an increase of around 25% over baseline, while only requiring and additional
10-17 minutes on an H100 per 100 tasks. We also compare some alternative aggregation
methods. The aggregations compared are: ’best prob’ (max(P )), worst prob (min(P )),
sum of probs (

∑
P ) and sum of log prob (

∏
P ) which we use.

using no more than two guesses.

Recall that any (decoder-only) large language model M also provides us with
probabilities for each input token. Given a task C and a solution candidate
Sk, the model can calculate a probability PM (Sk|C), which represents how
likely it is that the model would generate Sk when provided with C us-
ing standard sampling. At first glance, using this probability for selection
might seem redundant, as it appears that it would just result in selecting
the solution with the highest sampling probability – something that could
be achieved more directly by simply sampling.

Instead, we leverage our augmentation techniques. As the network was
trained using augmentations, it stands to reason that a correct solution
should demonstrate greater stability in its sampling probability under aug-
mented conditions compared to an incorrect one.

We therefore calculate the augmented probabilities:

P aug
i (Sk) = PM (Ti(Sk)|Ti(C))

for augmentations T1, . . . , Tn. Our results always use D8 symmetry aug-
mentations and optionally color permutations and example shuffling. Using
these 8 augmentations for scoring, we observed that taking the product of
the probabilities (or alternatively, summing the logsoftmax values) led to a
highly stable and effective selection strategy. Our selection strategy can be
summarized as:

argmax
k

∏
i

P aug
i (Sk)

14



A comparison of this selection procedure can be seen in Table 6. Adding
candidate scoring with augmentations improves our score by roughly 25%
over baseline, and shows a significant increase compared to our next best
solution. Using this technique we are able to select the correct candidate in
72.5 of 80 possible cases, thereby solving 72.5 out of the 100 randomly split
off tasks from the evaluation set.

Even the smaller Llama-rearc model, where preliminary training exclusively
used Re-ARC, was able to solve 218 of all 400 evaluation tasks after sec-
ondary finetuning on those tasks.

4 Discussion

Using the above pipeline we were able to score 53.5 points during the Kaggle
ARC Prize 2024 and 56.5 points shortly after the submission deadline (there-
fore not being reflected on the leaderboard), securing us the second place
in the competition. Our approach demonstrates that LLMs can effectively
tackle many of the complex tasks provided by the ARC-AGI benchmark.
The pipeline presented is highly interconnected and provides results greater
than the sum of its parts. The success of our scoring algorithm relies on the
custom DFS algorithm’s ability to provide candidates with arbitrary cutoff
values. This in turn is enabled by optimizing model training in both train-
ing phases and by simplifying the problem space. Each part of the pipeline
requires the augmentations to work as well as it does.

Finally, we believe that this approach has not yet completely saturated and
might scale further, using additional augmentation strategies, further opti-
mizing training hyperparameters or by using larger models.

Acknowledgement

We would like to express our sincere gratitude to Lambda, for providing
computational resources essential for optimizing our preliminary training
phase within our overall training pipeline. Specifically, they supplied us
with a server equipped with 8xH100 GPUs, enabling rapid iteration on our
ideas. Their support was instrumental for reaching our final score.

15

https://lambdalabs.com/


References
[1] François Chollet. “On the Measure of Intelligence”. In: CoRR abs/1911.01547

(2019). arXiv: 1911.01547. url: http://arxiv.org/abs/1911.
01547.

[2] Icecuber / top-quarks. Code for 1st place solution to Kaggle’s Ab-
straction and Reasoning Challenge. Accessed: 2024-11-11. 2024. url:
https://github.com/top-quarks/ARC-solution.

[3] Wenhao Li et al. Tackling the Abstraction and Reasoning Corpus with
Vision Transformers: the Importance of 2D Representation, Positions,
and Objects. 2024. arXiv: 2410.06405 [cs.CV]. url: https://arxiv.
org/abs/2410.06405.

[4] Abhimanyu Dubey et al. “The Llama 3 Herd of Models”. In: CoRR
abs/2407.21783 (2024). doi: 10.48550/ARXIV.2407.21783. arXiv:
2407.21783. url: https://doi.org/10.48550/arXiv.2407.21783.

[5] Sharath Turuvekere Sreenivas et al. LLM Pruning and Distillation in
Practice: The Minitron Approach. 2024. arXiv: 2408.11796 [cs.CL].
url: https://arxiv.org/abs/2408.11796.

[6] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part
3.2, Knowledge Manipulation. 2024. arXiv: 2309.14402 [cs.CL]. url:
https://arxiv.org/abs/2309.14402.

[7] Zeyuan Allen-Zhu and Yuanzhi Li. “Physics of Language Models: Part
3.1, Knowledge Storage and Extraction”. In: ArXiv e-prints abs/2309.14316
(Sept. 2023). Full version available at http://arxiv.org/abs/2309.
14316.

[8] Aaditya K. Singh and DJ Strouse. Tokenization counts: the impact of
tokenization on arithmetic in frontier LLMs. 2024. arXiv: 2402.14903
[cs.CL]. url: https://arxiv.org/abs/2402.14903.

[9] Kaj Bostrom and Greg Durrett. Byte Pair Encoding is Suboptimal for
Language Model Pretraining. 2020. arXiv: 2004.03720 [cs.CL]. url:
https://arxiv.org/abs/2004.03720.

[10] Kaiser Sun et al. Tokenization Consistency Matters for Generative
Models on Extractive NLP Tasks. 2023. arXiv: 2212.09912 [cs.CL].
url: https://arxiv.org/abs/2212.09912.

[11] Michael Hodel. Addressing the Abstraction and Reasoning Corpus via
Procedural Example Generation. 2024. arXiv: 2404.07353 [cs.LG].
url: https://arxiv.org/abs/2404.07353.

[12] Arsenii Moskvichev, Victor Vikram Odouard, and Melanie Mitchell.
“The ConceptARC Benchmark: Evaluating Understanding and Gen-
eralization in the ARC Domain”. In: Trans. Mach. Learn. Res. 2023
(2023). url: https://openreview.net/forum?id=8ykyGbtt2q.

[13] Wen-Ding Li et al. Combining Induction and Transduction for Abstract
Reasoning. 2024. arXiv: 2411.02272 [cs.LG]. url: https://arxiv.
org/abs/2411.02272.

16

https://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1911.01547
https://github.com/top-quarks/ARC-solution
https://arxiv.org/abs/2410.06405
https://arxiv.org/abs/2410.06405
https://arxiv.org/abs/2410.06405
https://doi.org/10.48550/ARXIV.2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2309.14402
https://arxiv.org/abs/2309.14402
http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2004.03720
https://arxiv.org/abs/2004.03720
https://arxiv.org/abs/2212.09912
https://arxiv.org/abs/2212.09912
https://arxiv.org/abs/2404.07353
https://arxiv.org/abs/2404.07353
https://openreview.net/forum?id=8ykyGbtt2q
https://arxiv.org/abs/2411.02272
https://arxiv.org/abs/2411.02272
https://arxiv.org/abs/2411.02272


[14] Chuan Li. Llama-3.2-3B-Instruct-uncensored. Accessed: 2024-11-11. 2024.
url: https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-
uncensored.

[15] Yuren Mao et al. “A Survey on LoRA of Large Language Models”. In:
CoRR abs/2407.11046 (2024). doi: 10.48550/ARXIV.2407.11046.
arXiv: 2407.11046. url: https://doi.org/10.48550/arXiv.2407.
11046.

[16] Nelson F. Liu et al. “Lost in the Middle: How Language Models Use
Long Contexts”. In: Trans. Assoc. Comput. Linguistics 12 (2024), pp. 157–
173. doi: 10.1162/TACL\_A\_00638. url: https://doi.org/10.
1162/tacl%5C_a%5C_00638.

[17] Aaditya K. Singh and DJ Strouse. “Tokenization counts: the impact of
tokenization on arithmetic in frontier LLMs”. In: CoRR abs/2402.14903
(2024). doi: 10.48550/ARXIV.2402.14903. arXiv: 2402.14903. url:
https://doi.org/10.48550/arXiv.2402.14903.

[18] Edward J. Hu et al. LoRA: Low-Rank Adaptation of Large Language
Models. 2021. arXiv: 2106.09685 [cs.CL]. url: https://arxiv.org/
abs/2106.09685.

[19] Daniel Franzen and Jan Disselhoff. Llama-3.2-3B-ARChitects-ReArc-
bnb-4bit. 2024. url: https://huggingface.co/da-fr/Llama-3.2-
3B-ARChitects-ReArc-bnb-4bit.

[20] Daniel Franzen and Jan Disselhoff. Mistral-NeMo-Minitron-8B-ARChitects-
Full-bnb-4bit. 2024. url: https://huggingface.co/da-fr/Mistral-
NeMo-Minitron-8B-ARChitects-Full-bnb-4bit.

17

https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored
https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored
https://doi.org/10.48550/ARXIV.2407.11046
https://arxiv.org/abs/2407.11046
https://doi.org/10.48550/arXiv.2407.11046
https://doi.org/10.48550/arXiv.2407.11046
https://doi.org/10.1162/TACL\_A\_00638
https://doi.org/10.1162/tacl%5C_a%5C_00638
https://doi.org/10.1162/tacl%5C_a%5C_00638
https://doi.org/10.48550/ARXIV.2402.14903
https://arxiv.org/abs/2402.14903
https://doi.org/10.48550/arXiv.2402.14903
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://huggingface.co/da-fr/Llama-3.2-3B-ARChitects-ReArc-bnb-4bit
https://huggingface.co/da-fr/Llama-3.2-3B-ARChitects-ReArc-bnb-4bit
https://huggingface.co/da-fr/Mistral-NeMo-Minitron-8B-ARChitects-Full-bnb-4bit
https://huggingface.co/da-fr/Mistral-NeMo-Minitron-8B-ARChitects-Full-bnb-4bit


A Miscellaneous

There were several optimizations and ideas that slightly boosted our score
but did not fit in the main text.

• We found that we could use the logsoftmax probabilities obtained in
the DFS Candidate generation in scoring, providing a slight boost at
no additional compute cost.

• Before using scores from various augmentations, we used a selection
algorithm based on the similarity of generated outputs, choosing the
candidate that had the most pixelwise similarity to all other candi-
dates.

• Due to the nature of the contest we had a very limited time window
for generating our solutions. In the end we were able to completely
parallelize our solution on both T4 GPUs provided.

• There is a trade-off between Generation and Selection, that we were
unable to optimize for the hidden test set. Reducing the DFS cutoff
value provides more potentially correct solutions, but makes it harder
to select them. While the best values for evaluation were rather low, we
found higher cutoffs of up to 20% to work better on Kaggle, which had
the added benefit of reducing run-time. But even for low percentage
values the DFS returns surprisingly few results on average, see Figure 7.

• As can be seen in our results, increasing the size of the base model
substantially increases the score at every part of the pipeline. We
invested a lot of time to make sure that we are able train and use the
8B Nemo Minitron model in a reasonable timeframe on Kaggle. We
believe that even larger models could elevate performance again.

Figure 7: Number of potential candidates returned by the DFS using a 5% cutoff value
on the evaluation dataset. In most cases the number of candidates is far lower than the
possible theoretical maximum of 20.

18



0
1
0

2
0

3
0

4
0

50
60

70
80

90
10
0

11
0

12
0

13
0

14
0

0

204060

28.08.

08.09

04.10

06.10

11.10

18.10

24.10

05.11
06.11

09.11
10.11

V
e
rs
io
n
(l
ow

er
V
er
si
on

co
rr
es
p
on

d
s
to

n
ew

er
S
u
b
m
is
si
on

)

Score

S
co
re

M
a
x
S
co
re

(5
6
.5
)

D
at

e
S
co

re
S
ig

n
ifi

ca
nt

C
h
an

ge
s

M
od

el
T
ra

in
E
x
am

p
le

s
A

u
g.

S
am

p
li
n
g

S
tr

at
eg

y
S
el

ec
it

on
S
tr

at
eg

y

28
.0

8.
20

24
7.

0
In

fe
re

nc
e

on
ly

(n
or

m
al

&
tr

an
sp

os
e)

M
is

tr
al

-N
em

o-
12

B
26

k
2x

st
oc

ha
st

ic
-

08
.0

9.
20

24
20

.0
T
es

t-
ti

m
e

re
tr

ai
ni

ng
M

is
tr

al
-N

em
o-

12
B

26
k

2x
st

oc
ha

st
ic

-

04
.1

0.
20

24
23

.0
M

od
el

sw
it

ch
+

R
eA

rc
+

si
mi

la
ri

ty
_s

el
ec

t
Ll

am
a-

3.
2-

3B
(u

n
ce

n
so

re
d
)

74
k

4x
st

oc
ha

st
ic

si
m

ila
ri

ty

06
.1

0.
20

24
30

.0
16

-f
ol

d
in

fe
re

nc
e

Ll
am

a-
3.

2-
3B

(u
n
ce

n
so

re
d
)

74
k

16
x

gr
ee

dy
si

m
ila

ri
ty

11
.1

0.
20

24
37

.0
C

al
cu

la
ti

ng
sc

or
es

w
it

h
au

gm
en

ta
ti

on
s

Ll
am

a-
3.

2-
3B

(u
n
ce

n
so

re
d
)

74
k

16
x

gr
ee

dy
4x

A
ug

Sc
or

e

18
.1

0.
20

24
41

.0
Lo

ng
er

pr
e-

tr
ai

ni
ng

Ll
am

a-
3.

2-
3B

(u
n
ce

n
so

re
d
)

16
6

k
16

x
st

oc
ha

st
ic

4x
A

ug
Sc

or
e

24
.1

0.
20

24
44

.0
D

F
S

in
fe

re
nc

e
Ll

am
a-

3.
2-

3B
(u

n
ce

n
so

re
d
)

16
6

k
16

x
D

F
S

10
%

4x
A

ug
Sc

or
e

05
.1

1.
20

24
47

.0
M

od
el

sw
it

ch
+

ad
d

C
on

ce
p
tA

rc
N

eM
o-

M
in

it
ro

n-
8B

17
8

k
8x

D
F
S

17
%

8x
A

ug
Sc

or
e

06
.1

1.
20

24
48

.5
Lo

ng
er

pr
e-

tr
ai

n
+

in
cl

u
d
e

fu
ll

ev
al

se
t

N
eM

o-
M

in
it

ro
n-

8B
"N

em
o-

fu
ll
"

36
8

k
8x

D
F
S

17
%

8x
A

ug
Sc

or
e

09
.1

1.
20

24
53

.5
16

-f
ol

d
in

fe
re

nc
e

N
eM

o-
M

in
it

ro
n-

8B
"N

em
o-

fu
ll
"

36
8

k
16

x
D

F
S

14
%

8x
A

ug
Sc

or
e

10
.1

1.
20

24
56

.5
*

A
dd

in
g

A
R

C
-H

ea
vy

(f
or

p
re

-t
ra

in
)

N
eM

o-
M

in
it

ro
n-

8B
"N

em
o-

h
ea

v
y
"

53
1

k
16

x
D

F
S

20
%

8x
A

ug
Sc

or
e

Table 7: Timeline of scores in the kaggle competition, along with the changes we deem
most significant for the improved performance. The final submission marked with (*)
finished scoring after the deadline had already ended.

19



Algorithm 1 Depth-First Probability-Guided Sampling for LLMs
The algorithm presented here assumes that the model supports internal
caching for already seen sequences and only needs to process the newly added
tokens.
Our actual implementation differs from this simple variant, as we are using
unsloth, which does not support dynamic caching and requires us to prune
the key-value-cache of the transformer ourselves.
Furthermore, we use various performance optimizations, like a simultane-
ous initial forward pass of the best known sequence including prompt and
prediction (which is much faster than token-by-token generation) as well
as aggregating the sequences during backtracking to avoid the unnecessary
processing of sequences that would be discarded later.
1: procedure DFS_sample(model, prompt, threshold,max_len, eos_id)
2: Input: model is the language model
3: Input: prompt is the prompt that should be completed
4: Input: threshold is the maximum negative log probability allowed
5: Input: max_len is the maximum length (including the prompt)
6: Input: eos_id is the index of the end of sentence token
7:
8: function Explore(tokens, score)
9: if tokens[−1] = eos_id or |tokens| ≥ max_len then

10: return (score, tokens)
11: end if
12:
13: next_token_logits← model.predict_logits(tokens)[−1]
14: next_token_log_prob← −log_softmax(logits)
15: valid_sequences← ∅
16:
17: for each possible next token t do
18: next_score← score+ next_token_log_prob[t]
19: if next_score ≤ threshold then
20: next_tokens← current_tokens+ [t]
21: continuations← Explore(next_tokens, next_score)
22: valid_sequences← valid_sequences ∪ continuations
23: end if
24: end for
25: end function
26:
27: return Explore(prompt, 0.0)
28: end procedure

20


	Introduction
	Pipeline Overview
	Methods
	Datasets
	Data Modeling
	Augmentation
	Training the models
	Solution Inference
	Selection Strategies

	Discussion
	Miscellaneous

